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1. Introduction 

Mercury cadmium telluride (Hg1-xCdxTe) is a very important material for infrared detection 
applications. When Cd mole fraction is equal to zero, we get mercury telluride (HgTe), which is 
a semi-metal with a band gap of zero. When the Cd mole fraction is equal to one, we get 
cadmium telluride (CdTe), which has a band gap of 1.56 eV. Hence, the alloy HgCdTe is tunable 
within the infrared spectrum and is especially useful for mid-wavelength (3–5 µm) and long-
wavelength (8–12 µm) infrared purposes. Additionally, it can be used for near infrared (1.5–1.8 
µm and 2.2–2.4 µm) to very long wavelength infrared (>15 µm) applications. HgCdTe is 
unrivaled among infrared materials, such as silicon and indium antimonide; however, HgCdTe/Si 
suffers from high defect densities that makes it difficult to reproduce high quality reliably. As a 
result, defect counting is an important tool for improving the quality of these materials. 

Equipment Used 

1. Nomarski Microscope 

2. Scanning Electron Microscope  

3. Atomic Force Microscope 

4. Resist Spinner 

5. Profilometer 

6. Etching Materials 

2. Experimental Procedures and Results 

In order to look at the sample under the microscopes, the HgCdTe sample had to be prepared. 
The sample was cleaned with a spray acetone and then isopropyl alcohol. These chemicals 
remove any dirt or organic contaminants that can reside on the wafer. 

After cleaning, the sample was blown dry with nitrogen gas. Defects are observed through 
microscopes, either optical or electron based. Optical Microscopes have limited magnification, 
on the order of 200 times. The sample was first examined under the Nomarski Microscope and 
images of the defects were taken (figure 1). After the Nomarski microscope, I observed the 
HgCdTe under the Scanning Electron Microscope. Finally, I used the Atomic Force Microscope 
to examine the defects. Many of the images taken with the different microscopes were of the 
same defect. After observing the HgCdTe with the three microscopy techniques, the sample was 
etched in methanol bromine to exaggerate the defects such as scratches and craters. This etch 
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does not reveal dislocations, however. A dislocation etch would need to be performed to further 
reveal dislocations. The sample was etched in a .25%Br solution for three 60-s periods. The 
sample was examined under the Nomarski Microscope after each 60 s etch (figure 2).  

By examining a sample of HgCdTe, various surface defects were identified. These include 
dislocations, scratches, craters, voids, bumps, and precipitates. Dislocations occur when planar 
molecules grow out of alignment. This is caused by lattice mismatches. Scratches are caused by 
human error if the sample is not properly handled or if tweezers are scraped across the sample. 
Craters in HgCdTe samples are caused by Hg deficiency during growth. Craters happen more 
often when the growth temperature is slightly high 

The Nomarski is an optical microscope that acquires very fine color images that illustrate details 
of defects very well. It works by polarizing a light source into two beams which take different 
paths through the sample. The beams are later recombined, giving the appearance of a three-
dimensional sample, emphasizing lines and edges.  

 

Figure 1. Sample examined under the Nomarski Microscope.

Crater seen with the 
Nomarski Microscope 

Nomarski Microscope 

Dislocations seen with the 
Nomarski Microscope 
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Figure 2. The crater before and after etches examined under the Nomarski Microscope. 

A Scanning Electron Microscope has a higher resolution than the Nomarski Microscope and can 
magnify an image to several thousand times its normal size. This type of microscope requires a 
small sample because the microscope is focusing on a very small area and it becomes hard to 
orient a large sample quickly. The Scanning Electron Microscope images a sample’s surface by 
scanning it with a high-energy beam of electrons. The electrons produce signals that show the 
sample’s surface topography, composition and other properties. The HgCdTe sample under the 
Scanning Electron Microscope is shown in figure 3. 

Crater before etch seen with a 
Nomarski Microscope 

Crater after etch seen with Nomarski 
Microscope (~ 1 micron etch) 
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Figure 3. The HgCdTe sample examined under the Scanning Electron Microscope. 

 
The Atomic Force Microscope has the highest resolution and magnification of the three 
microscopes. This microscope is very good at mapping the topography of a sample. The Atomic 
Force Microscope uses a tiny probe mounted on a cantilever to “scan” the surface of an object. 
The probe is extremely close to but does not touch the surface. As the probe moves across the 
surface, forces between it and the atoms on the surface induce forces on the probe that bend the 
cantilever. The amount of bending is measured, providing a map of the topography of the 
surface. The HgCdTe sample examined under Atomic Force Microscope is shown in figure 4.

Defect as seen with the Scanning 
Electron Microscope Wide photo of HgCdTe surface 

Scanning Electron Microscope 



 
 

 5 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The HgCdTe sample examined under Atomic Force Microscope  

In addition to working on the original project, I was able to access Class 100 and Class 10 
cleanrooms to use some specialized equipment. This included but was not limited to, the resist 
spinner, profilometer, and mask aligner. A cleanroom is an environment or series of rooms with 
very low levels of contaminants. A Class 1000 cleanroom has more airborne contamination than 
a Class 100 or Class 10 cleanroom. For the spinning process, an excess amount of a resist is 
placed on the substrate, which is being held down on a vacuum chuck, and is then rotated at high 
speed in order to spread the fluid by centrifugal force. A Profilometer is a measuring tool used to 

Atomic Force Microscope 
map of HgCdTe sample 

Atomic Force Microscope 
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measure a profile, or height, and is used to accurately measure the thickness of the resist that is 
applied. It works much like a record player. It moves a very small stylus across the surface of the 
sample and calculates the height and general irregularity of the sample’s surface. 

3. Procedure for Spinning Resist onto the HgCdTe Sample  

1. Set desired program in the spinner computer and set the required temperature on the hot 
plate. 

2. Test program with a sample wafer 

3. Place your sample onto the spinner  

4. Use an eyedropper to put the resist onto the wafer.  Make sure there are no air bubbles in 
the dropper. 

5. Start the spinning program. 

6. When the spinning stops, place the wafer onto the hot plate and using a stopwatch, bake the 
resist for the time specified for that resist. 

7. After baking, place the wafer into the sample holder. 

4. Conclusion 

The development of good HgCdTe based detectors requires high quality semiconductor material. 
Growth conditions, choice of substrate, and overall cleanliness of the entire procedure all have a 
major impact on material quality. Defects in the semiconductor material reduce the performance 
of fabricated devices and therefore must be minimized.
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